
Journal of Global Optimization 16: 229–243, 2000. 229
 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Test Problem Generator by Neural Network for
Algorithms that Try Solving Nonlinear
Programming Problems Globally*

DEGANG LIU and XIANG-SUN ZHANG
Academy of Mathematics and System sciences, Institute of Applied Mathematics, Chinese Academy
of Sciences, Beijing 100080, China
(e-mail: xszhang@amath2.amt.ac.cn; dliu@math2.amt.ac.cn)

(Received 8 April 1997; accepted 26 November 1999)

Abstract. A test problem generator, by means of neural network’s nonlinear function approxi-
mation capability, is given in this paper which provides test problems, with many predetermined
local minima and a global minimum, to evaluate nonlinear programming algorithms that are
designed to solve the problem globally.

Key words: Feedforward network; Global solution; Nonlinear programming; Test problem
generation

1. Introduction

A general nonlinear programming problem may have many local optimal
solutions. For the case of searching minimal (or maximal) solution, a local minimum
(maximum) with the smallest (largest) objective function value among the all local
solutions is the global solution. It is natural that one prefers to solve a given problem
by ending at a global solution. But it is well known that most of the traditional
nonlinear programming algorithms converge to a local solution. Many authors
devoted to design algorithms that have global behavior, that is, the designed
algorithm is expected to end at a global solution. We denote such algorithms as
G-algorithms to distinguish them from the traditional algorithms.

There are two classes of G-algorithms. One is in the deterministic nature and the
other is in the stochastic nature in which some statistical techniques are involved.
Surveys on the developments of deterministic G-algorithms can e found in papers
and books [8, 9, 13, 14, 18, 20]. The representative works and surveys for the
stochastic nature G-algorithms are in [2, 12, 17]. Recently Artificial Neural Net-
works are used as efficient tools of G-algorithm design, Boltzmann Machine and
Simulated Annealing are two of the popular methods, which are basically in the
class of stochastic nature (see [10, 1]).

* This research was supported by the National Science Foundation of China (No. 39830070).

230 D. LIU AND X.-S. ZHANG

To evaluate and compare the existing /new G-algorithms, one needs a system of
representative test problems. Despite some contributions for constructing and
collecting test problems for G-algorithms can be found (see [11, 15, 16]), there still
exists a lack of representative test problems for G-algorithms. There are two sources
of test problems collections:

(2) Collection of problem instances that have been used in published papers and
reports to evaluate G-algorithms, and real world problems that were raised in
practical applications with significant characteristics. Test problems in this kind of
collection may differ from each other greatly and no relationship between them. The
algorithm designer will be satisfied if he /she can solve these test problems one by
one by using his /her new algorithm, but may neglect a fact that such a solution is
probably made in a well prepared situation, such as the initial points were
sophisticatedly chosen for the specified test problem. When the test problem
changes, adjusting the proper initial points could be time-consuming. This makes
difficulty in comparing G-algorithms based on computational results with this
collection. [4] is the first book that systematically collects test problems in this
category.

(2) Collection of randomly generated test problems with known global solution.
A package of software that produces test problems with the following expected
properties is called a test problem generator: (i) Randomly choosing parameters in
the software, it provides virtually limitless supply of test problems that cover a wide
range of problems that mimic practical applications; (ii) it produces test problems
that have predetermined features which are specified by the research objectives, such
as test problems with predetermined local solutions, predetermined global solution
or ill-conditioned, degenerate, indefinite structures, etc. A generator gives user the
ability to conduct computer simulation of parameter variation and the option to
generate rather than just store the test problems.

The first systematic research on test problem generator for nonlinear program-
ming algorithms is due to K. Schittkowski in 1980 [15]. His test problems have the
following general form:

min f(x)

s.t. g (x) 5 0 , j 5 1, . . . , mj e
(1)

g (x) > 0 , j 5 m 1 1, . . . , mj e

x < x < xl u

where the objective function f(x) is defined by

1 T T]f(x) ; s (x) 1 x Hx 1 q x 1 a (2)0 2
nwith an n 3 n matrix H, q [R and a [R. Let x* be randomly chosen with

x , x* , x as a local minimizer of the problem and with exactly m activel u a

constraints. He therefore defines the restrictions by

TEST PROBLEM GENERATOR BY NEURAL NETWORK 231

Tg (x) ; s (x) 2 s (x*) 1 d (x* 2 x) , j 5 1, . . . , m 1 mj j j j e a
(3)

g (x) ; s (x) 2 s (x*) 1 m , j 5 m 1 m 1 1, . . . , m ,j j j j e a

nwhere d [R , j 5 1, . . . , m 1 m , and the real numbers m , j 5 m 1 m 1j e a j e a

1, . . . , m, are randomly chosen within the interval (0, m). And the functions
s , s , . . . , s are defined by signomials, i.e., generalized polynomial functions:0 1 m

P n
(j)(j) a ips (x) 5 O c P x , x . 0 , j 5 0, . . . , m , (4)j p i

i51p51

(j) (j)where the coefficients c and the exponents a are randomly chosen real numbersp ip

with predetermined bounds. The rest things are to properly choose the matrix H, q
and a in f(x) so that x* satisfies the Kuhn-Tucker conditions, the second-order
conditions and f(x*) 5 0, i.e., x* is a local solution with objective value zero. The
test problem generator discussed above was effectively employed by many authors
in their comparative research of existing nonlinear programming codes and new
suggested algorithms because of its simple structure and flexibility to fit different
purpose of research. But as one noticed, when we need to test a G-algorithm, what
we can draw from the running of the test problem is:

¯The algorithm finds the global solution if f(x) , 0
(5)

¯The algorithm failed to find the global solution if f(x) > 0

¯ ¯where x is the solution ended by the tested algorithm. But in fact, x is not
¯necessarily a global solution even if f(x) , 0 and we can not have a reliable answer

for the algorithm if it finds the global solution.
For quadratic programming algorithms, there is a test problem generator in [11].

Both the generators in [15] and [11] are for the constrained optimization algorithms
and also not specifically for the G-algorithms. On the other hand, G-algorithms for
unconstrained optimization play a very important role in global optimization
research, because they are the algorithms without taking advantages of the
problem’s structure and then have much wider applications. In fact any constrained
problem can be transformed into an unconstrained problem by introducing various
penalty terms.

Many test functions of various formats for unconstrained G-algorithms have been
provided. To name a few, Wingo [19] gave a test problem with one variable and the
known global solution:

52 39 71 79 16 5 4 3 2]]]]]min x 2 x 1 x 1 x 2 x 2 x 125 80 10 20 10
(6)

22 < x < 11

with the global solution x* 5 10 and f(x*) 5 22763.233. Goldstein and Price [6]
provided a test problem with two variables:

232 D. LIU AND X.-S. ZHANG

2 2 2min [1 1 (x 1 y 1 1) (19 2 14x 1 3x 2 14y 1 6xy 1 3y)]
2 2 2

? [30 1 (2x 2 3y) (18 2 32x 1 12x 1 48y 2 36xy 1 27y)] (7)

with the global solution x* 5 0, y* 5 21 and the optimal objective value 3.0.
Unfortunately there is a lack of generators that can produce test problems with

general nonlinear objective function and known global solution for unconstrained
optimization research in the literature.

In most cases a test problem for unconstrained optimization takes the form of a
combination of elementary functions whose local minima are known. For given test
problems, it is easy to evaluate the similarity of these objective functions in
one-dimensional case, just by comparing their graphs from which one can identify
the locations of their local minima through looking at valleys of the function curves
in some regions. When we look at an objective function graph, global minimum
locates in the lowest valley among all others, and the depth and rudeness of the
valley curves represent toughness of the problem to a G-algorithm. However, the
choice of test problems in the multidimensional case is more complicated than in the
one-dimensional case. It is difficult to use the graphs of the function (n > 3) for
evaluating if they are suitable problems one would like the G-algorithms to solve.
Features of a test function are hard to control by users. A well-designed test problem
generator can be superior in overcoming this disadvantage.

Reviewing the published works, one way of designing a test problem generator is
to formulate a template of analytical functions, usually using signomials as its
building blocks. At minimum point a quadratic function is used to help obtain the
convexity as optimality conditions requested. However, when many local points are
to be known, the final polynomial function could be very complicated because it had
to interpolate these quadratic functions and the computation of the each quadratic
function coefficient could be very cumbersome.

Function approximation is recognized as one of the many successful applications
of feedforward type Artificial Neural Networks. From mathematical point of view, a
feedforward network performs a nonlinear mapping between an input and an output
space. The learning of the network can be regarded as synthesizing an approxi-
mation of a multidimensional function which is performing a simple fitting
operation or a hypersurface reconstruction in a multidimensional space to a finite set
of data points (the training examples). From this point of view the generalization is
nothing more than interpolating the test set on the fitting (or reconstructed)
hypersurface.

Consider an unconstrained nonlinear optimization problem:

min f(x)
(8)

nx [R

where f(x) is a general nonlinear objective function. As a test problem for G-
algorithms, some information at the local and global solutions, we call it Solution
Information, of the problem (8) are expected, including some of its local and global

TEST PROBLEM GENERATOR BY NEURAL NETWORK 233

optimal points, function values at these points, and/or Hessian properties. Tradition-
ally, this set of solution information is predetermined by designers or stochastically
selected as inputs to a test problem generator, then a system of parameters can be
calculated within the analytical form of f(x), so that the optimal conditions at these
points are satisfied by the generated objective function f(x). Therefore, a general test
problem of unconstrained nonlinear optimization problem can be expressed in the
form:

min. f(w, x)
(9)

s.t. v < x < u
nwhere x [R , w is a set of parameters to be determined before (9) is used to test a

nG-algorithm, and v, u [R are lower and upper bounds telling the range of the
solutions and limiting the search area. Once w is chosen f(w, x) is a function of x
and (9) can e used as a specific test problem.

In this paper we propose that a neural network can work as a test problem
generator with features just discussed in the above paragraph. The test problem we
suggested for G-algorithms takes the form:

min F(W, x)
(10)

s.t. v < x < u
nwhere x, v, u [R , F is a feedforward neural network, i.e., a multi-layer perceptron

(MLP) of two hidden layers and an output layer with only one output node with
m msynaptic weights denoted as W [R . For any given W [R , F(W, x) works as a

n 1 nnonlinear mapping: F : R → R , or a smooth nonlinear function defined in R . Once
solution information is properly presented, the neural network F(W, x) has the ability
to learn the weights W from the information to behave as designer expected at the
solution points.

Theoretical proofs concerning the power of the neural networks in approximating
nonlinear functions have been given by many authors. Here we cite a theorem by
Girosi and Poggio [5]:

THEOREM 1. Networks with two layers of hidden units with sigmoidal nonlineari-
ty can uniformly approximate (to within any e . 0) any real continuous function of
multiple real inputs.

In Section 2 of this paper we give a procedure of test problem generator
construction in a way that we use a two-hidden-layer perceptron network architec-
ture with sigmoidal nonlinearity for its hidden layers and one linear neuron for its
output layer. Back-propagation is employed to learn nonlinear objective functions
based on the information given at user defined local /global points. The each trained
network then can be used as a test problem in the form of (10) for unconstrained
global minimization. The generated test problems have nonlinear objective func-

234 D. LIU AND X.-S. ZHANG

tions, many known local minima and one global solution. Network training for
several specific test problem examples are presented in Section 3.

2. Test problem generator construction
l n lChoose x [R , v < x < u, l 5 1, . . . , L to be the expected isolated local minima

lpoints of the objective function of (8) and specify their local minima values as z ,
l ll 5 1, . . . , L respectively. Suppose x* 5 argminhx u z* < z , l 5 1, . . . , Lj be the

global minimum point and corresponding z* be the optimal value of f(x*).
l l l lDecide a d for each x such that V 5 hx u ix 2 x i < d , l 5 1, . . . , Lj are notl 2

overlapped each other. Construct quadratic functions:

1 Tl T l l l]S DQ (x) ; x H x 1 q x 1 a , ix 2 x i < d , i 5 1, . . . , L (11)l 22

with

Tl l lH 5 U U
l l lq 5 2H x (12)

1 T Tl l l l l l]a 5 z 2 x H x 2 q x .l 2

where U is a randomly generated n 3 n up-triangle matrix with its coefficients
chosen from a uniform or normal distribution.

Our purpose is to fabricate such an objective function in form of (10) that its
l lbehavior at each of the d -neighbourhood of x is just like the positive semidefinite

lquadratic function Q (x) of (11) with the property that

L l
= Q (x) 5 0x

T2 l l l l
= Q (x) 5 U U (13)x

l l lQ (x) 5 z .

lThis quadratic function guarantees x to be the optimal point locally and can be used
to take data samples within the hypersphere V for training the network (10).l

A learning data set P and T are taken in the following way:

L

lP 5< P
t51

(14)
l l l l lP 5 h p (k) u i p (k) 2 x i < d , k 5 1, . . . , Kj , l 5 1, . . . , L2

lwhere p (k) distribute uniformly in V . K is a predefined constant of local learningl

set sample size at V . The total learning size of P is L 3 K. Letl

TEST PROBLEM GENERATOR BY NEURAL NETWORK 235

l l l l lT 5 ht (k) u t (k) 5 Q (p (k)), k 5 1, . . . , Kj , l 5 1, . . . , L
(15)

L

lT 5< T
l51

Now the examples of input-outut pairs (P, T) are ready to be used in learning the
network (10).

Structure of our test problem generator is a three-layer perceptron. Mathematical-
ly

[3] [3] [2] [2] [1] [1]F(W, x) 5 C (W C (W C (W x))) . (16)

For convenience and simplicity the bias term in (16) is handled here (as usual) in a
manner of uniform with synaptic weights by considering it as a weight connecting a
neuron whose activation is always equal to unity. A functional block diagram
representation of above network is shown in Figure 1.

Designing the structure of network (16) is to decide:

1. Sufficient number of neurons for each hidden layer;
[s]2. Activation function C , s 5 1, 2, 3.

Typically for the purpose of function approximation,
2u1 2 e[1] [2] [3]]]]C (u) 5 C (u) 5 tanh(u) 5 ; C (u) 5 u . (17)2u1 1 e

The number of neurons required for hidden layers depends on the complexity of a
specific test problem. The more complex F is, the more hidden neurons are needed
to realize the nonlinearity of the mapping. Hence the requirement of hidden neurons

Figure 1. Architecture of the three-layer feedforward network.

236 D. LIU AND X.-S. ZHANG

is related with dimensionality and L, the number of local minimum points. Not
enough hidden neurons will result in too big learning errors because of lack of
nonlinearity while too many neurons may bring the problem of overfitting. Optimal
strategies in designing a MLP was summarized by Simon Haykin [7].

Given the structure of F(W, x) and the learning set (P, T), the back-propagation
algorithm with any other learning strategy such as presented in [3] can be used here,
following a process that starts with random initial weights and continuously
adjusting the weights until the total errors between F(W, x) and the target T reach to
a predetermined goal e, or the epochs (complete presentations of the entire training
set during the learning process) is larger than a pre-set sufficiently large constant.

[1] [2] [3]After learning, the final weight matrix W* 5 hW , W , W j are recorded. The
F(W*, x) then can be used as a test problem objective function.

Now we conclude the whole process that produce a test problem:

Algorithm for Test Problem Construction

l lStep 1. Choose v < x < u and z , l 5 1, . . . , L.
l l l lFind x* 5 argminhx u z* < z , l 5 1, . . . , Lj and compute d 5 minhix 2

jx i /3, j 5 1, . . . , Lj.2
lStep 2. For l 5 1, . . . , L, construct quadratic function Q (x) defined by (12) and

(13).
Step 3. Randomly take data samples from each V . Collect all samples into Pl

according (14). Compute target data set T according to (15).
Step 4. Select number of neurons for each hidden layer. Start learning process, after

specifying the error goal, learning rate, and the maximum epoch as
argument, by using back-propagation algorithm program, standard, or
combined with various learning strategies such as momentum and learning
rate adaptation to accelerate convergence.

Step 5. Record the learned weights W* when converged.

REMARK 1 (Stopping Criteria). The back-propagation algorithm in step 4 is
considered to have converged at W* when summed squared error or the absolute
rate of changes in the average squared error per epoch is sufficiently small, or when
iteration of epochs is greater than a pre-set threshold.

lREMARK 2. In (12), U is a n 3 n up-triangle nonsingular matrix generated
Tl l l lrandomly. This means that H 5 U U is positive definite and x is expected to be

lthe unique optimal solution locally in V . If H is generated using normallyl
ldistributed variates, it is very likely that we will obtain a well-conditioned Q (x) in

V . When constructing the QP test problem, Lenard [11] adopted a method that thel

condition number of the Hessian matrix can be controlled. In his method, the
condition number of H is determined by the element of a n 3 n diagonal matrix D,
which are chosen as follows:

TEST PROBLEM GENERATOR BY NEURAL NETWORK 237

1
]D 511 t9

uiD 5 (t9) , i 5 2, . . . , n 2 1 (18)ii

D 5 t9nn

where t9 is the square root of the desired condition number and each u is a uniformi

variate on the interval (21, 11). As a consequence, the eigenvalues of H are
ldistributed on (1 /t, t). To generate a positive semidefinite quadratic function Q (x)

one or more of diagonal elements of D should be set to zero. If we use Lenard’s
lmethod in (12), H can be constructed by

Tl l l lH 5 B D B (19)

where B is a randomly generated orthogonal matrix which can be obtained through
QR decomposition technique from a square matrix N, each of whose elements is
chosen from the standard normal distribution.

REMARK 3. By this algorithm, because there exist errors between data samples
land actual output of F(W*, x), x may not be expected as the accurate local /global

lsolutions. However, as a test problem, it is enough to know that x ’s are very close
to the exact local minima of F(W*, x). Actually, it is not necessary to set the error
goal very small, because the most important is to let F(W*, x) learn the trends and

lsolution structures near each x .

3. Network training

In this section, we are going to demonstrate the algorithm proposed in the last
section by several different experiments of one- and two-dimensional cases in order
to show that the algorithm is well defined. Network complexity and generalization
will be briefly discussed.

In our computer experiments, the core step in generating a test problem is to train
the network (10) with the following sets of input for each run to the procedures
programmed in Matlab:

n• lower and upper bounds v, u of the free variable space R .
1 2 L T• a matrix of user selected local /global solution points [x , x , . . . , x] and a

1 2 L Tvector of corresponding solution values [z , z , . . . , z] .
• local training set size, K, which defines how many example pairs will be taken

from the neighborhood of a local solution.
• numbers of neurons for the first and second layers, and
• iteration parameters of maximum learning cycles (epochs), error goal, learning

rate and the display frequency.
The first two types of arguments are the most fundamental and ar the only test

problem specific information needed, while the last two sets of parameters are

238 D. LIU AND X.-S. ZHANG

Table 1. Parameters of experiment problems 1–3

Problem Locals Objective [1st [2nd K max
number values hidden hidden epochs

1 (2.7, 5.0, 7.31) (6, 0, 4) 30 30 10 1000
2 (1.9, 3.0, 5.25, 7.0, 8.93) (22, 25, 3, 7, 0) 50 50 10 1000
3 (27.36, 22.5, 1.0, 3.0, 5.14, 7.2, 8.9) (23, 10, 5, 3, 8, 0, 4) 70 70 10 1000

related with the neural network toolbox sub-procedures of back-propagation
algorithm initff for designing network structure, trainbpx for training the network
with momentum and learning rate adaptation mechanism, and simuff for network
generalization. Although there exist some hints of making a back-propagation
algorithm perform better, it is often considered that the design of a neural network
using the back-propagation algorithm is more of an art than a science that many of
numerous factors involved in the design are indeed the result of one’s own personal
experience. In the following test problem training experiments we define that the
first and the second hidden layer have the same number of neurons N, and we

2choose N > KL , where K is the local training set size which increases with
dimensionality of test problem, and L is the number of known local /global
solutions.

For the case of single variable (n 5 1), three test problems have been generated
via network training. We randomly choose 3 and 5 points in the interval [0, 10] for
problem 1 and problem 2 and 7 points in a wider interval [210, 10] for problem 3,

Figure 2. Test problem 1.

TEST PROBLEM GENERATOR BY NEURAL NETWORK 239

Figure 3. Test problem 2.

then according to the algorithm three networks with different hidden neurons have
been trained to achieve the test problems. Parameters input for problem 1–3 to the
procedure are listed in Table 1. The graphs of generated objective functions are

Figure 4. Test problem 3.

240 D. LIU AND X.-S. ZHANG

Table 2. Bounds and local solution information of experiment problems 4–6

Problem v u Locals Objective
[values

4 (23, 23) (16, 16) (0, 1) (2, 5) (10, 13) (6, 0, 4)
5 (23, 23) (16, 16) (0, 0) (1, 3) (2, 5) (10, 12.5) (14, 15) (0.2, 0, 2, 4, 1.5)
6 (220, 220) (20, 20) (215, 214) (0, 0) (5, 8) (2, 5) (14, 13) (18, 20) (25, 0.2, 0, 2, 4, 1.5)

Table 3. Parameters of experiment problems 4–6

Problem [1st [2nd K maximum Sum-squared
[hidden hidden epochs error

4 90 90 30 1000 2.08
5 150 150 30 500 10.70
6 180 180 30 500 23.42

shown in Figures 2–4, in which dotted and solid curves represent the sample data
and the learned function value generalizations.

For the case n 5 2, networks are designed for generating another 3 problems
denoted as problem 4–6, with 3, 5, and 6 local /global points stochastically chosen
within their boundaries listed in Table 2.

Similarly, parameters input to the network design are shown in Table 3. The mesh
plots of these two-variable test problems trained are shown in Figures 5–8. Figure 8
is the contour of problem 5 with the ‘1’ signs showing the expected local /global
valleys of the problem.

Figure 5. Test problem 5.

TEST PROBLEM GENERATOR BY NEURAL NETWORK 241

Figure 6. Test problem 5.

Noted by (16), the above generated test problems are smooth within their sample
boundaries. Although there is no analytical form of the generated objective functions
available from the networks, orders of derivatives of the objective functions can
easily be computed by using the difference approximation technique at any point of
x within the boundaries. One should be aware, however, that if we want to
generalize the network outside the sample boundary some unexpected behavior of
the network may occur due to the limitation of the feedforward network generaliza-
tion capabilities. Figure 9 shows he result for generalizing the problem 2 outside its
boundary [0, 10]. This may be a shortcoming of this approach that the test problem
objective function can not be defined universally and it is the reason why we restrict
our test problem in the form of (10).

Figure 7. Test problem 6.

242 D. LIU AND X.-S. ZHANG

Figure 8. Contour of problem 5 outside its boundary.

Nevertheless, from these experiments we can see that the neural network as a test
problem generator for global optimization algorithms has its great power of
providing almost limitless source of test problems effectively.

Figure 9. Generalization of problem 2.

TEST PROBLEM GENERATOR BY NEURAL NETWORK 243

References

[1] Aarts, E.H.L. and Korst, J.H.M. (1989), Boltzmann machines for travelling salesman
problems, European J. of Operational Research 39: 79–95.

[2] Chew, S.H. and Zheng, Q. (1988), Integral Global Optimization, volume 298 of Lecture
Notes in Economics and Mathematical Systems, Springer-Verlag.

[3] Cichocki, A. and Unbehauen, A. (1993), Neural Networks for Optimizations and Signal
Processing, John Wiley & Sons.

[4] Floudas, C.A. and Pardalos, P.M. (1987), A Collection of Test Problems for Constrained
Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science,
Springer-Verlag.

[5] Girosi, F. and Poggio, T. (1991), Networks for Learning – A View from the Theory of
Approximation of Functions, Neural Networks Concepts, Applications and Implementations,
Vol. 1, Prentice Hall Inc.

[6] Goldstein, A.A. and Price, J.F. (1971), On descent from local minima, Mathematics of
Computation 25: 569–574.

[7] Haykin, S. (1994), Neural Networks – A Comprehensive Foundation, Macmillan College
Publishing Company.

[8] Horst, R. and Tuy, H. (1990), Global Optimization: Deterministic Approaches, Springer-
Verlag.

[9] Horst, R., Pardalos, P.M., and Thoai, N.V. (1995), Introduction to Global Optimization,
Kluwer Academic Publishers.

[10] Kirkpatrick, S. (1984), Optimization by simulated annealing: quantitative studies, J. Statist.
Physics 34: 974.

[11] Lenard, M.L. and Minkoff, M. (1984), Randomly generated test problems for positive
definite quadratic programming, ACM Trans. Math. Soft. 10(1): 86–96.

[12] Mockus, J. (1989), Bayesian Approach to Global Optimization, Kluwer Academic Pub-
lishers.

[13] Pardalos, P.M. and Rosen, J.B. (1986), Methods for global concave minimization: A
bibliographic survey, SIAM Rev. 28(3): 367–379.

[14] Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Halsted
Press.

[15] Schittkowski, K. 91980), Nonlinear Programming Codes, volume 183 of Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag.

[16] Schittkowski, K. 91987), More Text Examples for Nonlinear Programming Codes, volume
282 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag.

[17] Schoen, F. (1991), Stochastic techniques for global optimization: a survey of recent
advances, J. of Global Optimization 1(2): 207–228.

[18] Torn, A. and Zilinskas, A. (1989), Global Optimization, volume 350 of Lecture Notes in
Computer Science, Springer-Verlag.

[19] Wingo, D.R. (1985), Globally minimizing polynomials without evaluating derivatives,
Intern. J. Computer Math. 17: 287–294.

[20] Zhang, X.-S. (1984), A survey on deterministic methods for searching global optimum,
Chinese J. of Operations Research 3(2): 1–3 (in Chinese).

